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1. INTRODUCTION

The results of an experimental study on the weakly bonded CO-Cl 2 complex were recently reported

(Bunte et al. 1992). Using a tunable diode laser to probe the CO chromophore, the complex was found

to have a linear geometry with a 6.228 cm- 1 blue shift in the CO vibrational frequency relative to

uncomplexed CO. Whether the carbon atom or the oxygen atom lies closest to the chlorine atom was not

determined experimentally. It was proposed, however, that the structure of the complex that was observed

was OC-Cl 2.

The objective in initiating this theoretical study was twofold. First, ab initio calculations can be used

to help determine the orientation of the CO in this complex. A comparison of the experimental results

along with the theoretical calculations should allow for corroboration of the conclusions presented in the

experimental paper. Secondly, it should be possible to determine if additional minima exist on the

potential energy surface corresponding to other geometries (i.e., T-shaped and/or slipped parallel). In this

report, the results from ab inirio calculations on the CO-C 2 complex at the SCF and MP2 levels of

approximation, utilizing two atomic orbital (AO) basis sets (double-zeta plus single polarization [DZP]

and triple-zeta plus double polarization I7_2PI) are presented.

2. THEORY

Closed shell Hartree-Fock SCF and MP2 calculations (Amos 1980 and Moller and Plesset 1934) were

performed using two AO basis sets. The smaller DZP basis for carbon and oxygen is the Dunning (1970)

contraction of the (9s,5p) to [4s,2p] plus a single primitive d function (oc = 0.80, ao = 0.90) (Hariharan

and Pople 1973) for carbon and oxygen. The chlorine DZP basis is the Dunning (Dunning and Hay 1977)

(lls,7p) contracted to [6s,4p] plus one d polarization function with %c, = 0.75 (Francl et al. 1982). The

TZ2P basis for carbon and oxygen are also contracted Dunning (1971) basis sets consisting of

(10s,6p) -+ [5ss4p] plus two d polarization functions with ic = (1.2, 0.4) and ao = (1.35, 0.45). The

chlorine was described by the Huzinaga (1971) (12s,9p) -+ [9s,6p] augmented by two d polarization

functions with %, = (1.50, 0.375). These chlorine a-values were determined by splitting the single d

(ocl = 0.75) according to the "even scaling rule" (Rafenetti 1973). The calculations were performed using

the CADPAC (Amos and Rice 1987) (Version 4.1) quantum chemistry codes running on a CRAY XMP

located at the U.S. Army Research Laboratory.
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The two monomers were optimized separately at both the SCF and MP2 levels using both basis sets.

This was followed, at each level of theory, by a geometry optimization of the complex starting with the

two linear isomers. All degrees of freedom were allowed to vary with no symmetry constraints imposed

upon the calculations. For each run, the two monomers were set at an initial separation of approximately

3.0 to 3.5 A, typical van der Waals bond lengths. The optimizations were considered converged when

all gradients were -e I x 10-5 hartree/bohr. Harmonic vibrational frequencies were obtained at the

optimized geometries using analytic second derivatives of the gradients except at the highest level of

theory (MP2/TZ2P) where machine storage capabilities necessitated the calculation of the force constant

matrix by taking finite differences of the gradients using center differencing with stepsizes of ±0.002 bohr.

In order to check for stable nonlinear CO-Cl2 structures, we ran additional optimizations at the highest

level of theory used in this work (MP2/TZ2P) starting with the Cl-Cl-C bond angle at 900 and 1350 and

the CI-C-O bond angle at 1800 (structures I and 2 in Figure 1). This process was then repeated with the

CO orientation reversed (i.e., with the oxygen lying closer to the chlorine [structures 3 and 4 in Figure I]).

These calculations were then followed by a second set of calculations where the C-O-Cl and the O-C-CI

angles were each started at 900 and 1350, and the O-C0-CI and C-CI-CI bond angles were started at 1800

(structures 5-8 in Figure 1).

3. RESULTS

3.1 Linear Complexes. Both linear isomers of CO-Cl 2 were found to be minima, and are shown

schematically in Figure 2. Linear OC-C12 structures resulted from initial starting structures 2, 5, 7, and

8 shown in Figure 1. Linear CO-Cl 2 structures were obtained when starting from structures 4 and 6 in

Figure 1. Tables 1 and 2 summarize the structural parameters of the stable linear complexes and the

monomers, respectively. As one might expect, the calculated bond lengths of the monomers change very

little (i.e., _10- 3 A) when reoptimized in the complex. However, the calculated CO bond length is always

shorter in the OC-C02 (carbon bonded to the chlorine) complex and remains essentially constant in the CO-

Cl2 complex when compared to uncomplexed CO. In addition, the C02 bond length has increased slightly

in both of the linear isomers of the complex when compared to "free" chlorine. JRger, Xu, and Gerry

(1992) have observed a shortening of the CO bond length and a lengthening of the C02 bond length in a

microwave study of OC-C!2 . Two other trends can also be observed in the linear structures. First, the

OC-Cl2 complex is consistently lower in energy than the CO-Cl 2 isomer at all levels of theory. At the

MP2/T7Z2P level, the OC-Cl2 isomer has an energy of -1032.765025 H and the CO-Cl2

2
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Table 2. Summary of the Monomer Properties Determined From Ab Initio Calculations

CO
SCF/DZP MP2/DZP MP2/TZ2P

Rco (A) 1.116 1.154 1.137

v0 (cm- 1) 2429.379 2105.847 2122.782

E (H) -112.759 732 -113.070 186 -113.161 461

BSSE E(H) CO-Cl2  - - -113.161 525

BSSE E(H) OC-CI2  - -113.161 664

BSSE E(H) T-shape - -113.161 523

BSSE E(H) Parallel -113.161 604

C12

SCF/DZP MP2/DZP MP2/TZ2P

RcI2 (A) 1.994 2.011 2.030

v (cm1-) 578.286 536.024 562.905

E(H) -918.896 125 -919.307 864 -919.601 037

BSSE E(H) CO-Cl 2  - - -919.601 484

BSSE E(H) OC-CI2  - - -919.601 392

BSSE E(H) T-shape - - -919.601 466

BSSE E(H) Parallel - - -919.601 399

isomer has an energy of -1032.764068 H, a difference of 0.000957 H (210 cr- 1 ). Subtracting the

energies of the monomers from the energy of each complex yields D., the binding energies of the

complexes. The binding energy is found to be 554 cm-1 for the OC-C12 complex and 337 cm- 1 for the

CO-Cl 2 complex. After correcting for basis set superposition errors (BSSE) using the counterpoise method

of Boys and Bemardi (1970), these values become 432 and 232 cm-1 , respectively. In making

comparisons between the binding energies of the two isomers, it is meaningful to compare the energy

difference between the zero-point levels (DO) as well as the De values. Using the frequency data presented

in Tables 3 and 4, the zero-point energies of OC-CI2 and CO-Cl2 are calculated to be 397 and 232 cm-1 ,

respectively. Again, the BSSE corrected values are 275 and 120 cm- , a difference of 155 cm-.

6



Table 3. Summary of the Ab Initio Vibrational Frequencies Calculated for the Linear OC-C12
Complex at the MP2/TZ2P Level of Approximation

Symmetry Vibrational Frequency Mode
(an-1)

n 29.1 C12 intermolecular bend

n 29.2

r 61.9 intermolecular stretch

H 97.8 CO intermolecular bend

H 97.8

r 555.4 C12 stretch

r 2129.0 CO stretch

Table 4. Summary of the Ab Initio Vibrational Frequencies Calculated for the Linear CO-1 2
Complex at the MP2/TZ2P Level of Approximation

Symmetry Vibrational Frequency Mode
(cm-1)

HI 25.5 Ca2 intermolecular bend

H 25.5

r 58.6 intermolecular stretch

H 59.2 CO intermolecular bend

H 59.2

r 562.3 C12 stretch

X+ 2120.8 CO stretch

7



While the calculations consistently predict the formation of OC-C12 over CO-Cl 2, the two minima are close

enough in energy that both isomers may exist as long as the barrier between them is sufficiently high.

An additional trend observed in the data of Table 1 can be seen in Avo, the shift in the CO vibrational

frequency upon forming the complex. The frequency shifts were obtained by taking the difference

between the vibrational frequency of the CO monomer (found in Table 2) and the binary complex using

the same basis set at the same level of theory. All of the shifts are seen to be very small (i.e., Avo :

9 cm-1 . The CO-Cl 2 isomer exhibited a very small blue shift (+0.6 cm-1) for the MP2/DZP calculations

and small red shifts for the SCF/DZP (-2.9 cm- 1) and MP2/TZ2P (-2.0 cm-1 ) calculations. The red

shifts contradict the observed experimental blue shift of +6.2 cm- 1. In contrast, the more stable OC-C12

isomer is predicted to have a blue shift in the CO stretch at all levels of theory. The SCF/DZP calculation

results in a shift of +7.9 cm- 1, and, at the MPD/DZP level, a shift of +8.6 cm- 1 is predicted. At the

MP2/lZ2P level, the shift is calculated to be +6.3 cm- 1, in excellent agreement with experiment. Such

quantitative agreement is most likely fortuitous. The significance of these frequency shifts lies not in their

absolute magnitudes, but in the consistency with which they predict a blue shift in the CO frequency upon

formation of the OC-C12 complex. This consistent blue shift is absent in the CO-Cl2 isomer calculations,

lending further support that the OC-CI2 complex was observed experimentally.

The dipole moments, p, of the complexes are listed in Table 1. The orientation of the dipole moment

is not shown for the complexes computed at the SCF level because SCF calculations on CO give

erroneous values for the polarity. At the MP2 level, however, the computed polarity of the CO dipole

moment is a-CC&, in agreement with experiment. The MP2 polarities of the dipole moments of the

complexes have the positive end of the dipole pointing in the direction of the chlorine atoms in CO-Cl2

and reversed in OC-CI2 complex.

3.2 Nonlinear Complexes. Our search for a nonlinear CO-Cl2 complex produced two minima

corresponding to nonlinear van der Waals complexes. These structures are less well defined than their

linear counterparts due to the very shallow potentials in which they reside. Nevertheless, they do

conespond to minima on the potential energy surface. The optimized geometries of these complexes are

shown in Figure 2. The T-shaped minimum was found when starting from structure 3 in Figure 1. In

this ismer, the oxygen is very weakly bonded midway between the two chlorine atoms, as can be seen

in Figure 2. It is interesting to note that the corresponding T-shaped isomer with the carbon atom

peqpendIcular to the C12 Internuclear axis does not have a minimum. Optimizations starting at this



geometry resulted in a parallel structure. This will be discussed in more detail below. The structural

characteristics of the T-shaped isomer are shown in Table 5. The average distance between the centers

of mass of the CO and C12 is Rcm = 3.89 A, and the average bond angle between Rcm and the Cl2 is

found to be 900. The intermolecular bending motions of this complex exhibited very soft potentials as

witnessed by the very low frequencies associated with these motions (8.1 and 17.8 cm-1), as seen in

Table 6. The vibrational modes were assigned by constraining the complex to C2, symmetry and

calculating the vibrational frequencies. The calculated energy of this complex is -1032.763442 H, which

is 347 cm- 1 and 137 cm- 1 higher in energy than the linear OC-CI 2 and CO-Cl2 complexes,

respectively. The binding energy of the T-shaped isomer is calculated to be 207 cm- 1 (99 cm- 1 after

correction for BSSE). Calculated values of Do for this complex are 151 cm- 1 (44 cm- 1 including BSSE),

indicating that this isomer may be very difficult to observe experimentally since it may dissociate rapidly

due to the very weak bonding energy. Frequency calculations indicate a slight (1.1 cm- 1) red shift in the

CO vibrational frequency in this complex.

Table 5. Summary of the Results of Ab Initio Calculations on the Nonlinear Isomers
of CO-0C2

MP2/TZ2P

T-shape Parallel

RcO (A) 1.136 1.137

RcI2 (A) 2.030 2.030

Rcm (A) 3.89 3.63

Ol 90.00 67.40

02 - 99.20

v0 (cm- 1) 2121.656 2121.665

AV0a (cm-) -1.126 -1.117

p (D) 0.2600 0.2859

E(H) -1032.763 442 -1032.763 687

D. (cm- 1 ) 207 99 b 261 150 b

Do (cm-l) 151 4 4b 189 79 b

a Shift relative to uncomplexed CO.
b Includes correction for BSSE.

9



Table 6. Summary of the Ab Initio Vibrational Frequencies Calculated for the T-Shaped
CO-Cl 2 Complex at the MP2/TZ2P Level of Approximation

Symmetry Vibrational Frequency Mode
(cm-1) I

B2  8.1 in-plane intermolecular bend
B1  17.8 out-of-plane intermolecular bend

B2  42.2 intermolecular rock

A1  43.4 intermolecular stretch

A1  563.4 Cl2 stretch

A1  2121.6 CO stretch

The second nonlinear minimum, a parallel structure, is shown in Figure 2. In this complex, the CO

axis is nearly parallel to the C12 internuclear axis, with the average separation between the Cl2 and the CO

centers of mass Rcm = 3.63 A and the average angle between the Cl2 axis and Rcm equal to 67.40. This

complex stabilized after starting from structure I in Figure 1. The structural parameters of this isomer

ame summarized in Table 5 and the vibrational frequencies are given in Table 7. The parallel isomer is

calculated to be slightly more stable than the T-shaped isomer, but only by 51 cm- 1 (after correction for

BSSE), indicating that it too may be difficult to observe experimentally. Both the parallel isomer and the

T-shaped isomer have red shifts of equal magnitude in their CO vibrational frequencies. Of course,

whether these isomers are observable experimentally also depends upon the energies of the transition states

comecting the stable forms and the energies of the transition states connecting the stable forms with the

dissociated diatomics. Our suspicion, though we have not calculated the energies of the transitions states,

is that well depths of the nonlinear species are not large enough to support a stable structure.

4. CONCLUSIONS

The results of this theoretical study support the conclusion that the OC-CI2 isomer was observed in

our earlier experimental work. The very small change in the CO bond length and the CO stretching

frequency upon forming the complex suggest that electron distribution in the CO is essentially unperturbed

by the Cl2 . The calculated binding energy of the other linear isomer, CO-Cl2, suggests that it too might

be oberved experimentally. Plans are underway to search for this isomer. In addition to the two linear

W wmes, our alculations Indicate that two nonlinear complexes (one T-shaped, the other parallel) are also

10



Table 7. Summary of the Ab initio Vibrational Frequencies Calculated for the Parallel CO-CI2

Complex at the MP2/TZ2P Level of Approximation

Symmetry Vibrational Frequency Mode
(cm-1) II

A' 17.9 out-of-plane intermolecular bend

A' 31.9 in-plane intermolecular bend

A' 41.4 intermolecular rock

A" 52.6 intermolecular stretch

A" 562.8 C12 stretch

A" 2121.7 CO stretch

predicted to have minima. The calculations, however, predict that these complexes are so weakly bound

that they could be difficult to observe experimentally. Finally, the qualitative and quantitative agreement

between theory and experiment presented in this work is quite encouraging. While these results are quite

promising for predicting the qualitative trends in the structure of and vibrational frequency shifts in weakly

bound systems, a more statistical set of comparisons between theory and experiment are needed to validate

the quantitative accuracy of this type of calculation.
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